3.3 \(\int \sinh ^2(c+d x) (a+b \sinh ^2(c+d x)) \, dx\)

Optimal. Leaf size=61 \[ \frac{(4 a-3 b) \sinh (c+d x) \cosh (c+d x)}{8 d}-\frac{1}{8} x (4 a-3 b)+\frac{b \sinh ^3(c+d x) \cosh (c+d x)}{4 d} \]

[Out]

-((4*a - 3*b)*x)/8 + ((4*a - 3*b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*d) + (b*Cosh[c + d*x]*Sinh[c + d*x]^3)/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0428877, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3014, 2635, 8} \[ \frac{(4 a-3 b) \sinh (c+d x) \cosh (c+d x)}{8 d}-\frac{1}{8} x (4 a-3 b)+\frac{b \sinh ^3(c+d x) \cosh (c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]^2*(a + b*Sinh[c + d*x]^2),x]

[Out]

-((4*a - 3*b)*x)/8 + ((4*a - 3*b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*d) + (b*Cosh[c + d*x]*Sinh[c + d*x]^3)/(4*d)

Rule 3014

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[
e + f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e + f*
x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \sinh ^2(c+d x) \left (a+b \sinh ^2(c+d x)\right ) \, dx &=\frac{b \cosh (c+d x) \sinh ^3(c+d x)}{4 d}-\frac{1}{4} (-4 a+3 b) \int \sinh ^2(c+d x) \, dx\\ &=\frac{(4 a-3 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac{b \cosh (c+d x) \sinh ^3(c+d x)}{4 d}-\frac{1}{8} (4 a-3 b) \int 1 \, dx\\ &=-\frac{1}{8} (4 a-3 b) x+\frac{(4 a-3 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac{b \cosh (c+d x) \sinh ^3(c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.0854699, size = 47, normalized size = 0.77 \[ \frac{-4 (4 a-3 b) (c+d x)+8 (a-b) \sinh (2 (c+d x))+b \sinh (4 (c+d x))}{32 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[c + d*x]^2*(a + b*Sinh[c + d*x]^2),x]

[Out]

(-4*(4*a - 3*b)*(c + d*x) + 8*(a - b)*Sinh[2*(c + d*x)] + b*Sinh[4*(c + d*x)])/(32*d)

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 66, normalized size = 1.1 \begin{align*}{\frac{1}{d} \left ( b \left ( \left ({\frac{ \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{4}}-{\frac{3\,\sinh \left ( dx+c \right ) }{8}} \right ) \cosh \left ( dx+c \right ) +{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +a \left ({\frac{\cosh \left ( dx+c \right ) \sinh \left ( dx+c \right ) }{2}}-{\frac{dx}{2}}-{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)^2*(a+b*sinh(d*x+c)^2),x)

[Out]

1/d*(b*((1/4*sinh(d*x+c)^3-3/8*sinh(d*x+c))*cosh(d*x+c)+3/8*d*x+3/8*c)+a*(1/2*cosh(d*x+c)*sinh(d*x+c)-1/2*d*x-
1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.05928, size = 131, normalized size = 2.15 \begin{align*} \frac{1}{64} \, b{\left (24 \, x + \frac{e^{\left (4 \, d x + 4 \, c\right )}}{d} - \frac{8 \, e^{\left (2 \, d x + 2 \, c\right )}}{d} + \frac{8 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d} - \frac{e^{\left (-4 \, d x - 4 \, c\right )}}{d}\right )} - \frac{1}{8} \, a{\left (4 \, x - \frac{e^{\left (2 \, d x + 2 \, c\right )}}{d} + \frac{e^{\left (-2 \, d x - 2 \, c\right )}}{d}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2*(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

1/64*b*(24*x + e^(4*d*x + 4*c)/d - 8*e^(2*d*x + 2*c)/d + 8*e^(-2*d*x - 2*c)/d - e^(-4*d*x - 4*c)/d) - 1/8*a*(4
*x - e^(2*d*x + 2*c)/d + e^(-2*d*x - 2*c)/d)

________________________________________________________________________________________

Fricas [A]  time = 1.90866, size = 163, normalized size = 2.67 \begin{align*} \frac{b \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} -{\left (4 \, a - 3 \, b\right )} d x +{\left (b \cosh \left (d x + c\right )^{3} + 4 \,{\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2*(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

1/8*(b*cosh(d*x + c)*sinh(d*x + c)^3 - (4*a - 3*b)*d*x + (b*cosh(d*x + c)^3 + 4*(a - b)*cosh(d*x + c))*sinh(d*
x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 1.42794, size = 158, normalized size = 2.59 \begin{align*} \begin{cases} \frac{a x \sinh ^{2}{\left (c + d x \right )}}{2} - \frac{a x \cosh ^{2}{\left (c + d x \right )}}{2} + \frac{a \sinh{\left (c + d x \right )} \cosh{\left (c + d x \right )}}{2 d} + \frac{3 b x \sinh ^{4}{\left (c + d x \right )}}{8} - \frac{3 b x \sinh ^{2}{\left (c + d x \right )} \cosh ^{2}{\left (c + d x \right )}}{4} + \frac{3 b x \cosh ^{4}{\left (c + d x \right )}}{8} + \frac{5 b \sinh ^{3}{\left (c + d x \right )} \cosh{\left (c + d x \right )}}{8 d} - \frac{3 b \sinh{\left (c + d x \right )} \cosh ^{3}{\left (c + d x \right )}}{8 d} & \text{for}\: d \neq 0 \\x \left (a + b \sinh ^{2}{\left (c \right )}\right ) \sinh ^{2}{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)**2*(a+b*sinh(d*x+c)**2),x)

[Out]

Piecewise((a*x*sinh(c + d*x)**2/2 - a*x*cosh(c + d*x)**2/2 + a*sinh(c + d*x)*cosh(c + d*x)/(2*d) + 3*b*x*sinh(
c + d*x)**4/8 - 3*b*x*sinh(c + d*x)**2*cosh(c + d*x)**2/4 + 3*b*x*cosh(c + d*x)**4/8 + 5*b*sinh(c + d*x)**3*co
sh(c + d*x)/(8*d) - 3*b*sinh(c + d*x)*cosh(c + d*x)**3/(8*d), Ne(d, 0)), (x*(a + b*sinh(c)**2)*sinh(c)**2, Tru
e))

________________________________________________________________________________________

Giac [B]  time = 1.36898, size = 161, normalized size = 2.64 \begin{align*} -\frac{8 \,{\left (d x + c\right )}{\left (4 \, a - 3 \, b\right )} - b e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 8 \, b e^{\left (2 \, d x + 2 \, c\right )} -{\left (24 \, a e^{\left (4 \, d x + 4 \, c\right )} - 18 \, b e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 8 \, b e^{\left (2 \, d x + 2 \, c\right )} - b\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{64 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2*(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

-1/64*(8*(d*x + c)*(4*a - 3*b) - b*e^(4*d*x + 4*c) - 8*a*e^(2*d*x + 2*c) + 8*b*e^(2*d*x + 2*c) - (24*a*e^(4*d*
x + 4*c) - 18*b*e^(4*d*x + 4*c) - 8*a*e^(2*d*x + 2*c) + 8*b*e^(2*d*x + 2*c) - b)*e^(-4*d*x - 4*c))/d